您的位置:網站首頁 > 電器維修資料網 > 正文 >
電感式DC/DC轉換器
來源: 日期:2013-11-17 19:40:31 人氣:標簽:
1. 工作原理(BUCK)
上圖降壓轉換器 基本的電路:是利用MOSFET開關閉合時在電感器中儲能,并產生電流。當開關斷開時,貯存的電感器能量通過二極管輸出給負載。 輸出電壓值與占空比(開關開啟時間與整個開關周期之間的比 )有關。
2. 整流二極管的選擇
該二極管必須具有與輸出電壓相等或更大的反向額定電壓。其平均額定電流必須比所期望的 大負載電流大得多。其正向電壓降必須很低,以避免二極管導通時有過大的損耗。此外,因為MOSFET工作于高頻開關模式,所以需要二極管具有從導通狀態到非導通狀態時,很快恢復。反應速度越快,DC/DC的效率越高。
肖特基二極管(而非傳統的超快速二極管)具有更低的正向電壓降和極佳的反向恢復特性。
3. 同步整流技術
同步整流是采用通態電阻極低的專用功率MOSFET,來取代整流二極管以降低整流損耗的一項新技術。它能大大提高DC/DC變換器的效率。功率MOSFET屬于電壓控制型器件,它在導通時的伏安特性呈線性關系。用功率MOSFET做整流器時,要求柵極電壓必須與被整流電壓的相位保持同步才能完成整流功能,故稱之為同步整流。
當輸出電壓降低時,二極管的正向電壓的影響很重要,它將降低轉換器的效率。物理特性的極限使二極管的正向電壓降難以降低到0.3V以下。相反,可以通過加大硅片的尺寸或并行連接分離器件來降低MOSFET的導通電阻RDS(ON)。因此,在給定的電流下,使用一個MOSFET來替代二極管可以獲得比二極管小很多的電壓降。
在同步降壓轉換器中,通過用兩個低端的MOSFET來替換肖特基二極管可以提高效率(圖1b)。這兩個MOSFET必須以互補的模式驅動,在它們的導通間隙之間有一個很小的死區時間(dead time),以避免同時導通。同步FET工作在第三象限,因為電流從源極流到漏極。
4. 電感器的選擇
隨著開關的打開和閉合,升壓電感器會經歷電流紋波。一般建議紋波電流應低于平均電感電流的20%。電感過大將要求使用大得多的電感器,而電感太小將引起更大的開關電流,特別在輸出電容器中,而這又要求更大的電容器。
電感值的選擇取決于期望的紋波電流。如等式1所示,較高的VIN或VOUT也會增加紋波電流。電感器當然必須能夠在不造成磁芯飽和(意味著電感損失)情況下處理峰值開關電流。
由公式可以得出:
(1) 開關頻率越高,所需的電感值就可以減小;
(2) 電感值增大,可以降低紋波電流和磁芯磁滯損耗。但電感值的增大,電感尺寸也相應的增大,電流變化速度也減慢。
為了避免電感飽和,電感的額定電流值應該是轉換器 大輸出電流值與電感紋波電流之和。
電感的直流電阻(RDC),取決于所采用的材料或貼片電感器的構造類型,在室溫條件下通過簡單的電阻測量即可獲得。RDC的大小直接影響線圈的溫度上升。因此,應當避免長時間超過電流額定值。
線圈的總耗損包括RDC中的耗損和下列與頻率相關聯的耗損分量:磁芯材料損耗(磁滯損耗、渦流損耗);趨膚效應造成的導體中的其他耗損(高頻電流位移);相鄰繞組的磁場損耗(鄰近效應);輻射損耗。
將上述所有耗損分量組合在一起構成串聯耗損電阻(Rs)。耗損電阻主要用于定義電感器的品質。然而,我們無法用數學方法確定Rs,一般采用阻抗分析儀在整個頻率范圍內對電感器進行測量。
電感線圈電抗(XL)與總電阻(Rs)之比稱為品質因素Q,參見公式(2)。品質因素被定義為電感器的品質參數。損耗越高,電感器作為儲能元件的品質就越低。
品質—頻率圖可以幫助選擇針對特定應用的 佳電感器結構。如測量結果圖2所示,可以將損耗 低(Q值 高)的工作范圍定義為一直延伸到品質拐點。如果在更高的頻率使用電感器,損耗會劇增(Q降低)。
良好設計的電感器效率降低微乎其微。不同的磁芯材料和形狀可以相應改變電感器的大小/電流和價格/電流關系。采用鐵氧體材料的屏蔽電感器尺寸較小,而且不輻射太多能量。選擇何種電感器往往取決于價格與尺寸要求以及相應的輻射場/EMI要求。
5. 輸入電容的選擇
因為buck有跳躍的輸入電流,需要低ESR的輸入電容,實現 好的輸入電壓濾波。輸入電容值必須足夠大,來穩定重負載時的輸入電壓。如果用陶瓷輸出電容,電容RMS紋波電容范圍應該滿足應用需求。
陶瓷電容具有低ESR值,表現出良好的特性。并且與鉭電容相比,陶瓷電容對瞬時電壓不敏感。
6. 輸出電容的選擇
輸出電容器的有效串聯電阻(ESR)和電感器值會直接影響輸出紋波電壓。利用電感器紋波電流((IL)和輸出電容器的ESR可以簡單地估測輸出紋波電壓。
輸出電壓紋波是由輸出電容的ESR引起的電壓值,和由輸出電容沖放電引起的電壓紋波之和
有些廠家的DC/DC產品的內部由補償環路,以實現 佳的瞬態響應和環路穩定性。當然,內部補償能夠理想地支持一系列工作條件,而且能夠敏感地響應輸出電容器參數變化。
7. BOOST 與 BUCK的拓撲結構
如上圖,BOOST 與 BUCK電路結構不一樣, Boost 電路是電感在輸入電源與升壓整流管之間, 開關管接電源地. BUCK 是電感在開關管與出電源之間,續流二級管反向接開關管與電源地.
【看看這篇文章在百度的收錄情況】
相關文章
- 上一篇: DC-DC轉換器相關知識
- 下一篇: 電荷泵的工作原理